Recursive Bayesian Estimation Applied to Autonomous Vehicles

نویسندگان

  • ANNIE WESTERLUND
  • JAKOBSSON LARSSON
چکیده

This thesis presents an implementation of a sequential extended Kalman filter applied to position, velocity and attitude estimation of autonomous vehicles. The filter is self-tuning by the introduction of a particle swarm otimization which tunes the process noise covariance. The sensor fusion is adaptive through the means of corrector signals. It accepts correctors in position, velocity and attitude, in all possible combinations. The algorithm also includes an extended Kalman filter for quaternion update in order to make the estimations more robust when implementing sensor fusion flexibility. The filter architecture developed in this thesis is called the adaptive self-tuning extended Kalman filter, or the ASTEK filter. The algorithm was first tested in MATLAB/Simulink and then implemented and finalized in C++ in order to facilitate real-time performance. From testings on a truck, the RMS error for estimating position using a GPS corrector lies in the interval [10−4, 0.002] m, for velocity in [10−4, 0.02] m/s, and for the estimated attitude in [10−3, 0.21] degrees, depending on the road and driving mode. When using a 2D map corrector, that is correcting for x, y, and yaw, the RMS estimations of roll and pitch are higher and lying in the interval [1.1, 3.1]. However, it is kept stable as a result from the quaternion EKF, whereas the z-direction diverges as expected. The results show that the algorithm is able to produce estimations of high accuracy and that the corrector signals may vary dynamically. Moreover, the results show how different roads and driving modes influence the estimation and error evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observability-based Optimization of Coordinated Sampling Trajectories for Flowfield Estimation

Autonomous vehicles are effective environmental sampling platforms whose sampling performance can be optimized by path-planning algorithms that drive vehicles to specific regions of the operational domain containing the most informative data. In this paper, we apply tools from nonlinear observability, nonlinear control, and Bayesian estimation to derive a multi-vehicle control algorithm that st...

متن کامل

Autonomous Tracking of Intermittent RF Source Using a UAV Swarm

Localization of a radio frequency (RF) transmitter with intermittent transmissions is considered via a group of unmanned aerial vehicles (UAVs) equipped with omnidirectional received signal strength (RSS) sensors. This group embarks on an autonomous patrol to localize and track the target with a specified accuracy, as quickly as possible. The challenge can be decomposed into two stages: 1) esti...

متن کامل

Dynamic space reconfiguration for Bayesian search and tracking with moving targets

This paper presents a technique for dynamically reconfiguring search spaces in order to enable Bayesian autonomous search and tracking missions with moving targets. In particular, marine search and rescue scenarios are considered, highlighting the need for space reconfiguration in situations where moving targets are involved. The proposed technique improves the search space configuration by mai...

متن کامل

Recursive Bayesian Estimation Navigation and Tracking Applications

Recursive estimation deals with the problem of extracting information about parameters, or states, of a dynamical system in real time, given noisy measurements of the system output. Recursive estimation plays a central role in many applications of signal processing, system identification and automatic control. In this thesis we study nonlinear and non-Gaussian recursive estimation problems in d...

متن کامل

Design of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks

During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015